
Corporate Memory: A framework for supporting tools for acquisition,
organization and maintenance of information and knowledge

Marek Ciglan*, Marián Babik*, Michal Laclavík*, Ivana Budinská*, Ladislav Hluchý*

marek.ciglan@savba.sk

Abstract: In this paper we describe corporate memory which can support multiple
knowledge acquisition, organization and maintenance tools. Memory holds and manages
documents and related information and knowledge processed and created by such tools.
Tools can work with several types of data such as documents, data in relational database
and semantic data. Such diversity of information is needed due to different tools use which
require and produce data in such form. Corporate Memory is being developed as part of
Slovak national project NAZOU SPVV 1025/04.

Key Words: Knowledge Memory, Semantics

1 Introduction
Recently the importance of knowledge management relates to the huge amount of knowledge
that is available for wide society of information systems’ users. The influence of information
and communication technology has been changing the society. Bringing new ideas and
technologies for any users requires adjusting of presenting knowledge to the special users’
requirements. Each system that aims to provide wide society of user customized information
has to deal with developing kind of organizational memory. Corporate memory (CM) plays
crucial role in the process of knowledge system development. CM provides two basic tasks:
storing of data, information and knowledge and their innovation and maintenance. Data stored
in CM are either in the form of their source form (e.g. HTML, pdf, etc.) or in the form of
ontologically organized data, data in database system, etc.
Corporate memory that is developed within the NAZOU project serves as a tool for exchange
data, information and knowledge among many components of the system. The project
NAZOU (Research and Development of Tools for Knowledge Discovery, Maintenance and
Presentation, a Slovak national project SPVV 1025/04) has started in September 2004 and it
is focused on discovery, maintenance and presentation of knowledge. The NAZOU is
applicable in any information domain dealing with offers. It can support gathering offers from
internet, offer knowledge processing, searching navigating and presentation.
The Pilot application is Job Offer search application, where tools are used to find, download,
categorize, annotate, search and display job offers to job seekers.

2 State of the Art

2.1 Semantic Knowledge Memories
One of the well known Semantic Web frameworks is the Jena toolkit. It is a Java framework
for building Semantic Web applications [1] available as open source software under a BSD
license. Jena implements APIs for dealing with Semantic Web building blocks such as RDF
and OWL. Jena's fundamental class for users is the Model, an API for dealing with a set of

* Institute of Informatics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 07, Slovakia

RDF triples. A Model can be created from the filesystem or from a remote file. Using JDBC,
it can also be tied to an existing RDBMS such as MySQL or PostgreSQL.
There are three main models in Jena, namely JenaLocalModel, RDQLLocalModel and
RDQLHybridModel. JenaLocalModel behaves as if the entire set of triples were locally in-
memory. The RDQLLocalModel naively queries a Model using the RDQL query language
instead of Jena's Model API. Very little is cached, so all user interaction through the web
application ends up relying on accessing the store through non-optimal queries. Jena
implements the Fastpath algorithm to take advantage of the native database engine for RDQL
queries using table joins, which may result in some performance gains when using a Jena
RDBMS store. The RDQLHybridModel uses RDQL queries to initialize a local in-memory
cache from a store. All user interaction after initialization uses Jena's Model API on the
cached data and does not require any communication with the store. Jena contains a rich set
of features for dealing with RDF including an inference engine, the ability to reason using
custom rules and OWL-based ontology processing.
The Semantic Web group at HP Labs also maintains Joseki, which is a web application for
publishing RDF models [2]. It is built on Jena and, via its flexible configuration, allows a
Model, represented as a set of files or within a database, to be made available on a specified
URL and queried using a number of languages. Joseki's other query mechanisms include
fetching the entire model, fetching only the direct relations to a particular node, and a subject-
predicate-object query language similar to Jena's API.

Tucana Technologies [3] maintains an open source version of its commercial Tucana
Knowledge Server called Kowari [4]. Kowari is an entirely Java based transactional,
permanent triple store available under the Mozilla Public License. It has its own transactional
database and supports several different methods of communication including RDQL via its
implementation of the Jena Model and a custom language named iTQL (Interactive Tucana
Query Language). Kowari allows connections through SOAP and RMI as well as
implementations of interfaces from Jena and JRDF.

3store [5] is developed by The University of Southampton and used within the Advanced
Knowledge Technologies (AKT) project [21]. 3store is a core C library that uses MySQL to
store its raw RDF data and caches [6] and relies on Redland [7], an RDF interface project
grounded in its C library, developed by Dave Beckett of Bristol University's Institute for
Learning and Research Technology.

Sesame is an open source RDF database with support for RDF Schema inferencing and
querying [8]. Written in Java, Sesame is intended to be run as a web application. Much like
Jena, Sesame can use open source RDBMS's MySQL and PostgreSQL in addition to its in-
memory database. Sesame also supports custom inferencing and can perform RDFS
entailment. Despite its excellent querying performance, its native API called SAIL API is
superseded by the Jena API.

RDF Schema Specific Database (RSSDB) [22] is a persistent RDF Store for loading resource
descriptions in an object-relational DBMS (ORDBMS) by exploiting the available RDF
schema knowledge. Querying of stored RDF descriptions is accomplished by RQL. RQL fully
supports XML Schema data types (for filtering literal values), powerful grouping primitives
(for constructing complex XML results) and aggregate functions (for extracting statistics).

2.2 File & RDB repositories
File repositories and relational databases are the most frequently used systems, in today's IT
world, for storing information in electronic form. HTTP, FTP and WebDav are examples of
widely used application level protocols, standards for accessing file repositories in the
distributed information infrastructure. HTTP (hypertext transfer protocol) [9] is a protocol for
distributed hypertext information access. Since 1990, it is used by World-Wide Web initiative
as a primary communication protocol. Although HTTP was primary designed for accessing
hypertext information, its capabilities reach far beyond hypertext use, allowing it's use for
distributed object management systems and much more.
FTP is a component of the TCP/IP protocol stack's application layer [10]. FTP is a protocol
for transferring files over TCP/IP network, where two parties are involved – the FTP server
(data provider) and FTP client (data consumer).
The basic data access and transfer protocols are used by higher-level solutions for data
repositories. Distributed File Systems (DTF) are examples of such data repositories solutions.
To illustrate DTF functionality, we briefly describe Red Hat Global File System (GFS). GFS
is open source cluster software [11], that allows manage a cluster of servers, as if it were one
server. GFS allows a cluster of Linux servers to share data in a common pool of storage,
allowing simplifying data infrastructure; scaling clusters seamlessly, adding storage or servers
on the fly and manage storage capacity as a whole, not by partitions.
OGSA-DAI [12] is the middleware product allowing access and integration of data from
various separate sources via the distributed computing infrastructures. It allows exposure of
data resources, such as relational or XML databases and file storages, providing also
components for querying, transforming and delivering data in different ways. With clearly
defined API and Web Services-based implementation, OGSA-DAI is becoming de-facto
standard for data grids systems.
Internet search engines developers also deals with the problem of data storage. The
architecture of data storage that is used by up-to-date internet search engines is very similar to
the corporate memory architecture. Well known search engine Google [13] stores each
searched HTML document in a sequence storage (in the form of comprised packets), that are
described by ISAM index [14]. Another component of the Google storage is dictionary with
about 14 millions words, list of word occurrences within documents together with indexes and
inverted indexes. Dictionary and indexes are maintained by relational databases. Very similar
architecture has also search engine Inktomi [15], with storages and index databases that are
stored in distributed system connected by HTTP protocol. Inktomi serves for search engines
of Microsoft, Yahoo! Companies, etc.

3 Architecture of Corporate Memory
Suggested architecture of corporate memory (CM) respects requirements that are given by the
distributed character of knowledge system.

Figure 1: Corporate Memory architecture

Corporate Memory is accessible for other components using relevant client. Each part of CM
has client implementation (see figure 2). Core of the CM is running as XML-RPC server and
other components can call relevant client method via XML-RPC.

Figure 2: UML Class diagram of main CM classes of Interaction Layer

Corporate Memory

Physical layer

Manipulation layer

Interaction layer

File storage RDB storage

Reasoning

Jena/Sesame

File API RDQL/Ontology API SQL/ DB API

XML-RPC Connector / WS Connector (SOAP)
Java Connector

RDF DB/ RDF-RDB
Mapping

Corporate memory is organized into three layers (see figure 1):
• Physical layer that contains a standard file system, database system, and ontological

models,
• Manipulation layer that provides acces to the stored data and information for other

components of knowldge system. That means storing knowledge and information into
physical layer, indexing, anotationand organization of stored data and their
maintenance before presenting.

• Interaction layer that is responsible for interaction of CM with other system’s
componets.

3.1 Semantic part of Corporate Memory
Semantic part of the corporate memory is responsible for providing user interfaces for
querying and manipulating the semantic content of the memory as well as providing the
physical backend for persistent and transient storage of the semantics. The semantic model of
the Web content is represented in the form of ontologies. The common language that we have
used for capturing the ontologies is the Web Ontology Language (OWL) [16]. OWL
facilitates machine interpretability of the Web content by providing additional vocabulary
along with formal semantics. In order to support maximum expressiveness while retaining
computational completeness and decidability we have used two light versions of the full
OWL, namely, OWL-DL and OWL-Lite [16]. The semantic part of the corporate memory is
also responsible for maintaining the knowledge expressed in the form of RDF and RDFS
language.
The architecture has two main parts; the first one is the core interface, which provides
transparent access to the underlying knowledge repositories and reasoners. The second one is
the OntoClient interface, which defines the possible interactions between the components of
the system and the semantic part of the corporate memory. This way it is possible to support
multiple backends, while maintaining the common user interface used by the components.
 The components can manipulate semantic part of memory using OntoClient, which is shown
in figure 2. Current implementation of the corporate memory uses Jena API and MySQL
storage backend; however since the OntoClient interfaces are independent of the backend and
API, we intent to extend the client to support also the Sesame API and query interfaces.
OntoClient consist of 4 main methods:

• Insert() – inserts OWL models in XML/RDF format into Onto CM
• getXML() – returns plain XML of resource from Onto CM
• filename2OntoID() – converts filename to RDF ID of resource in CM
• executeRDQLQuery()- returns RDF ID result list for given RDQL query

3.2 File & RDB repository
The part of corporate memory dedicated to file management provides a way for manipulating
the file storage using unified application interface, making actual physical file storage
transparent to the user or application. This virtualization allows the information and
knowledge management applications to access file storage in a uniform way if the file storage
resides on the same computing device as the application is running on, as well as in the case
that the file storage service is hosted at another computing resource.

In the current implementation the corporate memory's file storage is realized as a directory
subtree of a file system directory tree. Support for distribution of the storage among multiple
storage resources is not presently available.
Operations provided by CM for file management are: list, copy, move, delete files and
directories in CM; files can be inserted to CM from file input streams or by specifying local
file path, or by specifying URL of a document. Files can be retrieved from CM in the form of
the input stream, can be saved to defined location in local filesystem or application can
request an URL of a file stored in CM.
File management part of CM consist of core operations implementation and the client toolkit.
Client toolkit can be configured to access the CM's file storage through local java API, XML-
RPC call or through Web Service interface. Web Service interface to CM file storage is
realized by OGSA-DAI framework.
The relational database management part of the CM was also designed with virtualization
concept in mind, making actual database system and database connection object transparent to
the client applications. Advantage of this approach is to make possible to access distributed
resources in the same way as the local database system, from the application point of view.
This allows us to use CM implementation on a single computer as well as on a set of servers
with clearly separated functionalities (e.g. database server, file storage server, ontology
management server, set of application servers).
RDB part of CM provides interface to execute basic SQL queries, as well as interfaces to
execute predefined queries over common database structures. In the pilot implementation, the
common database structures of CM store data about documents that serve as the input data for
information and knowledge management applications. Indexed content of those input
documents is also available in the RDB part of CM for enabling fast, content-based,
identification of required documents from the large collection.
Application developers can provide their own predefined queries for application specific
relational data. New predefined queries can be plugged-in the CM, provided they satisfy CM
RDB query interface.
As the file storage part, the RDB part of CM is accessible through local java API, XML-RPC
call or through Web Service interface. Web Service interface to CM file storage is realized by
OGSA-DAI framework.
As the file and RDB management services of CM are still in prototype state of
implementation, no security mechanism is provided. Standard security mechanism -
username/password as the authentication tokens will be implemented in the future work.

4 Example of Use
In this chapter we describe example how NAZOU components work with information and
knowledge stored in CM. On Figure 3 data transformation chain is presented. On each stage
information or knowledge about files and offers is accumulated.
Following tools or components transform, generate and manipulate data, information and
knowledge in CM in listed order:

• RIDAR (Relevant Internet Data Resource Identification) connects to existing search
engines and identify relevant web resources

• WebCrawler and ERID (Estimate Relevance of Internet Documents) [17] recursively
explore web resources and store

• DocConverter transforms documents to TXT format.

• OSID (Offer Separation for Internet Documents) extract offers (e.g. job offers) from
document. If there is more offers on one document, or if there is only one it select
offer without page header, footer, menu, banners and other offer not related stuff.

• DaiDocIndexing ,DaiDocSearch and JDBSearch [18] index text documents and offers;
this allow other tools (searching, clustering) to use indexes for further processing.

• Ontea (Ontology based text annotation) [19] annotates text version of offers by
ontology individuals which are detected via regular expressions as relevant semantic
properties of the offer. Ontea thus create ontology form of offers from file offer
version according to defined domain ontology.

• Tools Prescott and faceted browser [20] support presentation, which transforms
ontological data to XML and XML is further transformed to HTML via XSL. Indexes,
found clusters or tool JobClusterNavigator are also used by presentation to search,
categorize and navigate in offers accumulated in CM.

Web

Documents

Dokuments
with offers

Offers

Offers

Crawler

Relevance

Offers
Extraction

Presentation

(X)HTML, TXT, DOC, PDF, ...

(X)HTML, TXT, DOC, PDF, ...

TXT, RDFS, OWL

XHTML

Semantic
Annotation,
Reasoning

TXT
Conversion

Figure 3: Data Transformation Chain
In given example you can see chain of almost independent tools, which are integrated around
proposed corporate memory. The memory works with 3 types of data – files, relational data
and semantic data, but fundamental conversion between the data types and formats is
supported by chain of independent tools.

5 Conclusion
In this paper architecture and first implementation of corporate memory was presented. Such
architecture supports chain of almost independent tools, which are integrated around proposed
corporate memory. As shown in previous chapter Corporate Memory is integrated with
independent tools. Such tools and Corporate Memory presents useful results to potential user
of system for given application. The Memory was designed and built based on previous
experience from R&D projects and it is further developed and used in several ongoing
national and international projects.

This work has been supported by the Slovak national project NAZOU SPVV 1025/04, K Wf-
Grid EU RTD IST FP6-511385, RAPORT APVT-51-024604, VEGA No. 2/6103/6.

References
1. HP & Sourceforge: Jena Semantic Web Library. http://jena.sourceforge.net/, 2006
2. Sourceforge: Joseki - A SPARQL Server for Jena. http://www.joseki.org/, 2006
3. Tucana Technologies, Inc.: Tucana Knowledge Server. http://www.tucanatech.com/, 2006
4. Open Source: Kowari Metastore. http://www.kowari.org/, 2006
5. Sourceforge: 3store. http://sourceforge.net/projects/threestore/, 2006
6. MySQL: MySQL - The world's most popular open source database. http://www.mysql.com/, 2006
7. Dave Beckett: Redland RDF Application Framework. http://www.redland.opensource.ac.uk/,

2006
8. Open Source: Sesame. http://www.openrdf.org/, 2006
9. The Internet Society: HTTP Protocol. http://www.w3.org/Protocols/rfc2616/rfc2616.html, 1999

10. D. J. Bernstein: FTP - File Transfer Protocol - Reference manual. http://cr.yp.to/ftp.html, 2006
11. RedHat: Red Hat Global File System. http://www.redhat.com/en_us/USA/home/solutions/gfs/,

2005
12. The University of Edinburgh: OGSA-DAI project. http://www.ogsadai.org.uk/, 2005
13. Gonsalves, A.: Google Gains Search-Engine Market Share. In InformationWeek,

http://www.informationweek.com/story/showArticle.jhtml?articleID=171202724, 3rd October,
2005

14. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Stanford
University, USA.

15. Brewer, E.A.: Inktomi Architecture. UC Berkley.
http://www.acm.org/sigs/sigmod/disc/disc99/disc/nsf_acad_ind/brewer/index.htm, 2005

16. W3C: The Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-features-20040210/,
2004

17. GATIAL E., BALOGH Z., LACLAVIK M., CIGLAN M., HLUCHY L.: Focused Web Crawling
Mechanism based on Page Relevance. In: Proceedings of ITAT 2005 Information Technologies -
Applications and Theory, Peter Vojtas (Ed.), Prirodovedecka fakulta Univerzity Pavla Jozefa
Safarika v Kosiciach, 2005, pp.41-46. Slovakia, September 2005. ISBN 80-7097-609-8

18. Lencses R.: Indexing for the Information Retrieval System supported with Relational Database. In
Sofsem 2005 Communications (editors: Vojtas et al), Slovenska informaticka spolocnost,
Bratislava, 2005

19. LACLAVIK M., GATIAL E., BALOGH Z., HABALA O., NGUYEN G., HLUCHY L.: Semantic
Annotation based on Regular Expressions. In: Proceedings of ITAT 2005 Information
Technologies - Applications and Theory, Peter Vojtas (Ed.), Prirodovedecka fakulta Univerzity
Pavla Jozefa Safarika v Kosiciach, 2005, pp.305-306. Slovakia, September 2005. ISBN 80-7097-
609-8.

20. NAVRAT P., BIELIKOVA M., ROZINAJOVA V.: Methods and Tools for Acquiring and
Presenting Information and Knowledge in the Web. CompSysTech'2005
http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/SIII/IIIB.7.pdf, 2005

21. AKT Technologies: 3store from the University of Southampton.
http://www.aktors.org/technologies/3store/, 2004

22. FORTH Institute of Computer Science: The RDF Schema Specific DataBase (RSSDB).
http://139.91.183.30:9090/RDF/RSSDB/, 2006

