Towards L arge Scale Semantic Annotation Built on
MapReduce Ar chitecture

Michal Laclavik, Martin Seleng, Ladislav Hluchy

Institute of Informatics, Slovak Academy of Sciesce
Dubravska cesta 9, Bratislava, 845 07
| acl avi k. ui @avba. sk

Abstract. Automated annotation of the web documents is adtallenge of
the Semantic Web effort. Web documents are stredtiut their structure is
understandable only for a human that is the majoblpm of the Semantic
Web. Semantic Web can be exploited only if metadatderstood by a
computer reach critical mass. Semantic metadatabearreated manually,
using automated annotation or tagging tools. Auteth&emantic annotation
tools with the best results are built on differemachine learning algorithms
requiring training sets. Another approach is to psétern based semantic
annotation solutions built on NLP, information rewal or information
extraction methods. Most of developed methodstested and evaluated on
hundreds of documents which cannot prove its reabe on large scale data
such as web or email communication in enterpriseoonmunity environment.
In this paper we present how a pattern based atioot@ol can benefit from
Google’'s MapReduce architecture to process largeiatraf text data.

Keywords: semantic annotation, information extraction, matadMapReduce

1 Introduction

Automated annotation tools can provide semantiadatt for semantic web as well
as for knowledge management [4] or other entergigdications [11].

Pattern based automatic or semi-automatic solsitfon semantic annotation or
tagging are usually based on NLP, information estl or information extraction
fields or minimally method algorithms common in thentioned fields are applied.
Information Extraction - IE [1] is closed to semardannotation or tagging by Named
Entity recognition — NE defined by series of MUGh&erences.

Semi automatic annotation approaches can be dividedwo groups with regards to
produced results [1]:

= identification of concept instances from the onggldn the text

= automatic population of ontologies with instanaeshie text
One of pattern based solutions for semi-automatotation is Ontea [2] [3] that uses
regular expression patterns to detect or creatarings in ontology. In our previous
works [2] [3] we compared Ontea with other annotatmethods and we conducted
experiments to demonstrate its success rate ab@¥e tBat is comparable to well
known annotation methods with easier applicabibty concrete domain specific

" This work is supported by projects NAZOU SPVV 12884, Commius FP7-213876,
SEMCO-WS APVV-0391-06, VEGA 2/7098/27.

application due to relatively simple method built cegular expressions. This is
another reason behind our decision to port Ontea MapReduce architecture. We
believe other well known semantic annotation orstiutions such as C-PANKOW,
KIM, GATE or different wrappers can be ported ifflapReduce architecture. For
survey on semantic annotation please see [4]] [1

To our best knowledge the only semantic annotasolution which runs on
distributed architecture is SemTag [6]. It uses 8s=ker [6] information retrieval
platform to support annotation tasks. SemTag ate®teeb pages using Stanford
TAP ontology [7]. However, SemTag is able to idnkiut not create new instances
in the ontology. Moreover, its results as well @PTontology are not available on the
web for a longer period of time.

In our previous work we ported semantic annotafiio Grid [3] with good
results but with no easy and direct implementatiad results integration. Thus we
have focused on different parallel and distribugechitectures.

Google’s MapReduce [8] architecture seems to baoal ghoice for several reasons:
= Information processing tasks can benefit from pelraind distributed
architecture with simply programming of Map and Resl methods

= Architecture can process Terabytes of data on RGtess with handling

failures

= Most of information retrieval and information exttimn tasks can be ported

into MapReduce architecture, similar to patterreldeannotation algorithms.
E.g. distributed grep using regular expressiong ohbasic examples for
MapReduce, is similar to Ontea pattern approachgusegular expressions
as well.

Compute Cluster

DOFS Block 1 DES Block
i [|
data data data da OFS Black 1
data data data data data |~
data cdata data data data -~

data data data data data » DFS Block 2

data clata data data data = |

data data data data data

data data data data data
data data data data data | OFS Block 2
dals daka claba dats dala \\\

data data data data data

I.Jlnlal.!nl..1cdl.1lﬁ|c!nt.1']|al.1 \ E
DF% Block 3
————

Fig. 1. MapReduce Architecture figure (source: Hadoop wepsi

On Figure 1 we can see main components of the Mdydeearchitecture: Map and
Reduce methods, data in distributed file systemSDputs and outputs. Several
replicas of data are created on different nodegmdiata are copied to DFS. Map
tasks are executed on the nodes where data atakdgaResults of Map tasks are key
value pairs which are reduced to results produgeBdduce method. All developer
need to do is implement Map and Reduce method esfdtecture will take care of

distribution, execution of tasks as well as fawdtetance. For more details on
MapReduce please see [8].
Two open source implementation of MapReduce argadle:
= Hadoop [9], developed as Apache project with refato Lucene and Nuch
information retrieval systems, implemented in Jaadoop is well tested on
many nodes. Yahoo! is currently running Hadoop 6r0Q0 nodes [15] in
production environment [16].
= Phoenix [10], developed at Stanford University, iempented in C++.
In this paper we discuss work in progress - portofgpattern based semantic
annotation solution Ontea into MapReduce architectiand its Hadoop
implementation. We provide preliminary results ond®les Hadoop cluster on email
documents.

2 Ontea

The method used in Ontea [2] [3] is comparableig@aerly with methods such as
those used in GATE, C-PANKOW, KIM, or SemTag. lbpess texts or documents
of an application domain that is described by a @onontological model and uses
regular expressions to identify relations betweext tand a semantic model. In
addition to having pattern implementation over tagexpressions, created Ontea’s
architecture allows simply implementation of othegthods based on patterns such as
wrapers, solutions using document structure, lagguzatterns similar to GATE, C-
PANKOW and many others. Ontea [17] is being createdn Open source project
under Sourceforge.net.

2.1 Ontea Scenarios and Results Examples

Current Ontea implementation can be executed iiff@&eint scenarios:
= Ontea: searching relevant individuals in knowledge b@éB) according to
generic patterns
= Ontea creation: creating new individuals of objects found in text
= Ontea IR: Similar as previous with the feedback of inforimatretrieval
methods and tools (e.g. Lucene) to get relevaneepated above word
occurrence and decide weather to create instanoetor

Table 1. Examples of Instances and Patterns

Text Instance Patterns — regular expressions

N -

Apple, Inc. Company: Apple Company: ([A-Za-z0-9]+)[,]+(Inc|Ltd)
Mountain View, CA 94043 Settlement: Mountain View Settlement: ([A-Z][a-z]+[*[A-Za-z]*)[
I+[A-Z){2}{]*[0-9K{5}

laclavik.ui@savba.sk Email: laclavik.ui@savba.skEmail:
[-_.a-z0-9]+@[-_.a-zA-Z0-9]+\.[a-z]{2,8}
Mr. Michal Laclavik Person: Michal Laclavik Person:

(Mr.|Mrs.|Dr.) ([A-Z][a-z]+ [A-Z][a-Z]+)

New application scenarios can be created by cortibmaf Result Transformers,
which is discussed in next chapter.

2.2 OnteaArchitecture
The fundamental building elements of the tool &e following java interfaces and
extended and implemented objects:
= ontea.core.Pattern: interface for adaptation for different patternamsd.
Currently implemented pattern search uses regulagpressions
PatternRegEXxp.
= onetea.core.Result: a class representing annotation results by mebjext
instance of defined type/class. Its extensionsdiferent types of instances
depending on implementation in ontology (Jena, ®e$eor as value and
type pairs.
= onteatransform.ResultTransformer: interface that after implementation
contains different types of transformations amongadation results. Thus it
can transforms set of results and include in t@msétion various scenarios
of annotation such as relevance, result lemmatizattransformation of
found value/type pairs (Table 1) into OWL instanogesesame or Jena API
implementation. It is used to transform type vapaérs into different type
value pairs represented e.g. by URI or lemmatieat talue. It can be also
used to eliminate irrelevant annotation results.

ontea.core.PatternSet

ontea.core.Result
+ PatternSet() ——

+ getPatternSet()

+ Result()

+ getIndividual()
+ setIndividual()
+ getPattern()

+ getType() + transform()

+ getRelevance() + SesamelndividualSearchAndCreate()
+ setRelevance() ‘

ontea.transform.Sesamelndividual...

«interface» 4 pattern
|_ontea.core.Pattern

+ transform()

+ annotate()

ontea.core.PatternRegExp

+ PatternRegExp()
+ PatternRegExp()
+ PatternRegExp()
+ annotate()

+ getName()

+ getPattern()

+ getType()

+ getThreshold()

+ equals()
+ hashCode()

ontea.core.ResultRegExp

+ ResultRegExp()

«interface»

ontea.transform.ResultTransformer

+ getFoundText()

ontea.core.ResultOnto

+ ResultOnto()

+ ResultOnto()

+ getURI()

+ getLocalName()
+ toString()

+ transform()
+ transform()

ontea.transform.LuceneRelevance

+ transform()
+ transform()
+ LuceneRelevance()

Fig. 2. Basic classes of Ontea platform.

On the Figure 2 you can seResult class, Pattern andResultTransformer
interfaces. Such design allows extending Ontedifterent patterns implementations
or for the integrations of existing pattern annotatsolutions. Also it is possible to
implement various result transformations by implatirey ResultTransformer, which
can be used also as inputs and outputs betweernddlpin MapReduce architecture.

2.3

Integration of Ontea with External Tools

Ontea tool can be easily integrated with exteroalst Some tools can be integrated
by implementation of result transformers and otie®d to be integrated directly.

MapReduce: Large scale semantic annotation using MapReduchit&cture

— is main topic of this article. Integration with alioop requires
implementation of Map and Reduce methods as destiibnext chapter.
Language ldentification: In order to use correct regexes or other patterns
often we need to identify language of use. For th&son it is convenient to
integrate Ontea with language detection tool. Weehgested Ontea with
Nalit [11]. Nalit is able to identify Slovak and glish texts as well as others
if trained.

As already mentioned some integration can be doyeiniplementing Result
transformers:

Lemmatization: When concrete text is extracted as representaifoan
individual, often we need to lemmatize found texfdaund or create correct
instance. For example capital of Slovakia can bentified in different
morphological formsBratidava, Bratislave, Bratislavu, or Bratisovou and
by lemmatization we can identify it always as indial Bratisava. We
have tested Ontea with Slovak lemmatizer Morphondaj. It is also
possible to use lemmatizers or stemmers from Snibwhbaect [18], where
java code can be generated.

Relevance Identification: When new instance is being created or found; it i
important to decide on instance relevance. This bensolved using
information retrieval methods and tools such as elngc [19]. When
connecting with Lucene, Ontea asks for percentagecurrence of matched
regular expression pattern to detected elemenesepted by word on used
document set. Document set need to be indexed bgrlas Example can be
Google, Inc. matched by pattern for company seartkt ([-A-Za-z0-9] [
1*[A-Za-20-9]*),[1*Inc[.\\g]+", where relevance is computed as “Google,
Inc.” occurrence divided by “Google” occurrence.eUsf Lucene is related
to Ontea IR scenario and LuceneRelevance implementation of
ResultTransformer interface. Similarly, other relevance algorithmels as
cosine measure can be implemented. This was usetkémnple in SemTag
[6].

OWL Instance Transformation: Sesame, Jena: Transformation of found key
— value pairs into RDFS or OWL instances in Sesamiena API. With this
integration, Ontea is able to find existing ins@mdn knowledge base if
existing and create new once if no instance foun@B. Ontea also use
inference to found appropriate instance. For exaniplOntea process
sentence “Slovakia is in Europe.” using pattern focation detection
(in|near) +(\p{Lu}\\p{L}+) following type value pair is detectddcation:
Europe. If we have Location ontology with Subclasses amntiDents,
Settlements, Countries or Cities and Europe isadirg@resent as instance of
continent, Ontea can detect existing Europe instancknowledge base
using inference.

3 OnteaPorted into Hadoop

For porting Ontea or any semantic annotation smiuii is important to understand
results of annotations as well as how they canespond to key/value pairs - outputs
of Map and Reduce methods to be implemented in MdpBe architecture. In table 1
we show a simple example of Ontea possible anootatsults such as settlements,
company names, persons or email addresses. Usaldrregpressions are simplified
to be more readable and understandable.
In the Map method, input is a text line which i®gessed by Ontea’s regex patterns
and outputs are key value pairs:
= Key: string starting with detected instance typé aontinue with instance
value similar tainstance row in table 1. This can be extended to returo als
instance properties e.g. address, phone or empibagrties of company.
= Value: File name with detection of instance. It t@nextended with position
in file e.g. line number and character line positibheeded.

Basic building blocks of Ontea are the followinggaclasses and interfaces described

earlier, which can be extended. Here we descrileentin scope of MapReduce

architecture:

= ontea.core.Pattern: interface for adaptation of pattern based seacclm text.
Main Pattern methodPattern.annotate() runs inside of Map method in
MapReduce implementation.

= onetea.core.Result: a class which represents the result of annotatiomn
ontology instance. It is based on the type andevalairs as in table lnstance
column. Ontology results extension contains alsa ORontology individual
created or found in ontology. Results are transéatiimto text keys as output of
Map method in MapReduce implementation.

= onteatransform.ResultTransformer: interface which transform results of
annotation. Transformers are used in Map or Rednethods in MapReduce
implementation to transform individuals into OWlefior eliminate some results
using Ontea IR scenario.

3.1 Ontearunning on Hadoop MapReduce cluster

We wrapped up Ontea functionality into Hadoop Maghiree library. We tested it on
Enron email corpus [20] containing of 88MB of dagad our personal email
containing of 770MB of data. We run same annotapiatterns on both email data
sets, on single machine as well as 8 node Hadaggiecl We have uselhtel(R)
Core(TM)2 CPU 2.40GHz with 2GB RAM hardware on all machines.

As you can see from Table 2, the performance &s@é 12 times on 16 CPUs in
case of large data set. In case of smaller datawas only twice faster then on single
machine and MapReduce overhead is much more vidiblthe table 2 we present
only 2 concrete runs on 2 different datasets, butality we have executed several
runs on these datasets and computational time egssimilar so we can conclude
that times presented in table 2 are very close¢oage.

Table 2. Performance and execution results

Description Enron corpus (88MB) Personal email (770MB)
Time on single machine 2min, 5sec 3hours, 37mins, 4sec
Time on 8 nodes hadoop

cluster 1min, 6sec 18mins, 4sec
Performance increased 1.9 times 12 times
Launched map tasks 45 187
Launched reduce tasks 1 1
Data-local map tasks 44 186
Map input records 2,205,910 10,656,904
Map output records 23,571 37,571
Map input bytes 88,171,505 770,924,437
Map output bytes 1,257,795 1,959,363
Combine input records 23,571 37,571
Combine output records 10,214 3,511
Reduce input groups 7,445 861
Reduce input records 10,214 3,511
Reduce output records 7,445 861

In our tests we run only one Map method implem#otizand one Reduce method
implementation. We would like to implement also giag Map results to another
Map method as an input and thus fully exploit pt&drof ResultTransformers in
Ontea architecture. However, we believe that this tests does not change — decrees
performance of semantic annotation on MapRedudgtaoture.

4 Conclusion and Future work

In this paper we discussed briefly how patternedasemantic annotation could
benefit from MapReduce architecture to process rgelacollection of data. We
demonstrated how Ontea pattern solution could bée@do implement basic Map
and Reduce methods. Furthermore we provided pradirmiresults on 8 node Hadoop
cluster. As we can see from preliminary resultsfqenance on large datasets is very
reasonable on Hadoop. MapReduce architecture laldeao thousands machines.
We believe semantic annotation can be successkylifosble to annotate or tag large
collections of documents.

In our future work we would like to test MapRedwdso on several Map tasks in
a row and publish implemented code under Onteacefanrge.net project. We also
want to use MapReduce architecture to solve comapplication domains such as
geographical location identification of web pagesd #arge scale email processing to
improve automated email management and semantichseg.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

Cunningham, H. (2005). Information Extraction tématic. Encyclopedia of Language
and Linguistics, 2nd Edition

Laclavik M., Seleng M., Gatial E., Balogh Z., khy L.: Ontology based Text Annotation
OnTeA,; Information Modelling and Knowledge Bases XVIOS Press, Frontiers in Al,
Vol. 154, ISBN 978-1-58603-710-9, ISSN 0922-63890@) 311-315

Laclavik M., Ciglan M., Seleng M., Hluchy L.: Grat Empowering Automatic Semantic
Annotation in Grid; to appear in proceedings of RP@7, Springer-Verlag

Uren V., Cimiano P.,Iria J., Handschuh S., Vafges M., Motta E.,Ciravegna F.:
Semantic annotation for knowledge management: Reqpeints and a survey of the state
of the art. Journal of Web Semantics, 4(1) (20@6)2B

Reeve L., Hyoil Han: Survey of semantic annotafitatforms. In SAC’05: Proceedings
of the 2005 ACM symposium on Applied computing, F=f)834-1638, New York, NY,
USA, ACM Press. ISBN 1-58113-964-0. (2005)

Dill S., Eiron N., et al.: A Case for Automatedrgje-Scale Semantic Annotation; Journal
of Web Semantics (2003)

Guha R. and McCool R. Tap: Towards a web of dhitia://tap.stanford.edu/.

Dean J., Ghemawat S.: MapReduce: Simplified Badgessing on Large Clusters,
Google, Inc. OSDI'04, San Francisco, CA (2004)

Lucene-hadoop Wiki, HadoopMapReduuttp: //wiki.apache.org/lucene-
hadoop/HadoopMapReduce (2008)

The Phoenix system for MapReduce programming.

http://csl.stanford. edu/~christos/sw/phoenix/. (2008)

Laclavik M., Seleng M., Hluchy L.: ACoMA: NetwoEnterprise Interoperability and
Collaboration using E-mail Communication; Expanding Knowledge Economy: Issues,
Applications, Case Studies ,I0S Press, 2007 Amstei§&8N 978-1-58603-801-4

Vojtek P., Bielikova M. (2007), Comparing Naturanguage Identification Methods
based on Markov Processes. In: Slovko - Internati8eminar on Computer Treatment of
Slavic and East European Languages, Bratislava

Kragi S., Novotny R.: Lemmatization of Slovak words btoal Morphonary, In TAOPIK
(2), Vydavatéstvo STU, 2007, ISBN 978-80-227-2716-7, pp. 115-118

Corcho, O.: Ontology-based document annotatiends and open research problems;
International Journal of Metadata, Semantics anwlOgies 1(1):47-57. 2006

Open Source Distributed Computing: Yahoo's Hpdgwapport, Developer Network blog,
http: //devel oper .yahoo.net/blog/ar chives/2007/07/yahoo-hadoop.html, (2007)

Yahoo! Launches World's Largest Hadoop Prodocdipplication, Yahoo! Developer
Network, http://devel oper .yahoo.com/bl ogs’/hadoop/2008/02/yahoo-wor | ds-lar gest-
production-hadoop.html, (2008)

Ontea: Pattern based Semantic Annotation PhatfSourceForge.net project,

http: //ontea.sourceforge.net/, (2008)

Snowball Projechttp://snowball.tartarus.org/, (2008)

Apache Lucene projechitp://lucene.apache.org/, (2008)

Klimt B., Yang Y.: Introducing the Enron Corp@GEAS, 2004,

http: //mmw.ceas.cc/paper s-2004/168.pdf, http: //www.cs.cmu.edu/~enron/, (2008)

