
Indexing for Information Retrieval System
supported with Relational Database �

Rastislav Lencses

Ústav informatiky, Prírodovedná fakulta,
Univerzita P. J. Šafárika v Košiciach,

Jesenná 5, 040 01, Košice,
Slovenská republika,

lencses@science.upjs.sk

Abstract. We deal with indexing of document collection for informa-
tion retrieval engine which use relational database as data store. We
will present an algorithm for index generation, compare it with other
algorithms in this area and estimate its time complexity. We created a
distributed version of this algorithm and discuss about its effectiveness.

Keywords: information retrieval, relation database, indexing, inverted list,
distributed computing

1 Introduction

An employing relational database model supported with SQL for needs of infor-
mation retrieval can be found in early works written in the time of first commer-
cial relational database : [8] - Macleod in the year 1978. More recently contri-
bution is [7], for example. First step in these works is to set up (at least) three
relational tables (fig. 1). These tables are used to information retrieval by SQL.

1..* 1
1..*1

Doc

-id:int
-name:String
-doc:Object
-norm:double

TermDoc

-id_term:int
-id_doc:int
-weight:double
-count:int

Term

-id:int
-name:String
-idf:double
-count:int

Fig. 1. Database relations used in information retrieval

The table doc contains name of the document, its content and norm of the
vector, which represents this document. The table term contains name of the
� This research was supported by the grant VEGA 1/0385/03



term, its inverse document frequency, a document frequency and total count of
this term in whole collection. Finally, termDoc contains foreign keys id_doc and
id_term, number and weight of term id_term in document id_doc.

We will define definitions used in information retrieval in the second chap-
ter and an inverted list in the third chapter. Generation of the inverted list is
described in the fourth chapter, distributed version in the fifth chapter. Sixth
chapter deals with time complexity of sequential algorithm and effectiveness of
distributed algorithm.

2 Definitions

Information retrieval engine (IRS, fulltext engine) implements two basic opera-
tions - a creation of index over document collection and querying this collection
with support of index to get documents relevant to user query. Documents have
no structure, they contains words (terms).

Collection of documents is progression Di

Di, i ∈ [1, n]

where n is number of documents. Every item of progression Di is progression

si
k, k ∈ [1, mDi ]

where mDi is number of words in the document Di. Terms from all documents
are in progression T

T = tj , j ∈ [1, mT ]
where mT is number of unique terms in all documents. T can be also defined
with help of set ST

ST =
n⋃

i=1

mDi⋃

k=1

{si
k}

Items of ST are just items of T (ordered lexicographically, for example).
There are several theoretical models used to design document representation

and define function, which assign relevant documents to user query. Vector space
model ([11]) defines documents as vectors in the space with dimension equals
to number of unique terms (mT ). Every item of this vector contains the weight
which expresses power of term contribution to the document. We define inversion
document frequency first

idfj = log(
n

dfj
)

where dfj is number of documents (document frequency) containing term tj .
We define (sparse) matrix A with dimensions mT × n, with items defined as
follows

wij = tfij . idfj
where tfij is number of occurrences (term frequency) of term tj in document

Di.
We can see, that wij is weight of term tj in document di.



3 Index

Documents relevant to user query can be found by searching full text directly.
There are several algorithms capable of search efficiently (Knuth-Moris-Pratt
algorithm, Boyer-Moore algorithm and the others [1]). This approach is suitable
only for a small document collection. Information retrieval engine need to create
external data structure (index) to speed up searching.

There are three types of typically used indexes: inverted list, signature and
suffix trees. Inverted list have the least time and space complexity ([1]).

Inverted list contains list of terms and for every term records occurrences this
term in documents. Inverted list can be binary (existence of term occurrence in
document is recorded), extended (number of term occurrences in document is
recorded) and full (position of term occurrence in document is recorded). In the
next we will use extended inverted list.

More formally, inverted list I is

(tj , Zj), j ∈ [1, mT ]

For extended inverted list we can define Zj as follows

Zj = (i, ki
l), l ∈ [1, mDi ]}

where ki
l is number of term occurrences tj in document Di.

We will only record basic morphemes in inverted list. The semantics will
decrease only a little, but length of inverted list will decreases significantly. We
used free open-source program ispell [4] to transform words of documents to
basic morphemes. In contrast to English language, where the Porter algorithm
is typically used, ispell use dictionary (Slovak language is morphematically much
more rich than English).

4 Generation of Inverted List

We can create inverted list straightforward in the memory with sorted array of
terms. This array contains unique terms from whole document collection (pro-
gression tj). For every term we record array of its occurrences in documents
(progression Zj). Occurrences of the term are in the (sorted) array, where is
recorded occurrence of the term in all documents. Each term of document is
binary searched in the sorted array of terms during the process of document
indexation. In the case the term exists in the sorted array, we search occurrences
and add/update occurrence of the term. If the term was not found, it is added
to sorted array of terms and occurrence of the term is recorded for this term.

This basic algorithm will fail in the case of larger document collection where
inverted list does not fit in the primary (operational, main) memory. As the
operation system is not able swap/page memory effectively without good knowl-
edge of the algorithm, it is necessary to use the persistence (in the secondary
memory - disk) directed by the algorithm.



In [1] is mentioned an algorithm, which build inverted list with algorithm
described above until the primary memory is exhausted. When no memory is
available, the partial inverted list (with occurrences) is written to the secondary
memory and the primary memory is erased. This process continues until whole
collection is proceed. Finally, we have a number of partial inverted lists. These
lists can be merged hierarchically. The merging of two inverted lists consists of
merging the sorted arrays of terms and if same term appears in both arrays,
merging occurrences from both arrays of terms. The phase of merging spent
20-30% of the overall time.

Another algorithm ([2]) was designed directly for Information Retrieval Sys-
tem supported with a relational database. The algorithm builds inverted list for
every document. Inverted list is transformed into INSERT commands into table
termDoc and one INSERT into table doc (see fig. 1). After document process-
ing is inverted list erased, so there is no lack of memory. Inverted list of unique
terms is generated in table term with help of special SQL command. It is also
necessary to compute term frequency and inverse document frequency.

We can use ideas from [2] and [1] to develop original algorithm with the
name Index(D, M). The algorithm in [2] use relational database and do not use
available primary memory, we can name it internally as Index(D). The algorithm
in [1] do not use database and use available memory, so we can name it as
Index(M). Algorithm Index(M) must merge inverted lists (and Index(D, M)
does not). Algorithm Index(M) must compute global weights and table term
(and Index(D, M) does not). The process of writing of term occurrences to table
consume significantly more time in algorithm Index(D) than Index(D, M). The
reason is that writing of term name takes more time than writing of simple
number identifier of the term. 1

We analyze structure of inverted list. This structure consists of list of terms
and every term is linked with list of term occurrences. The list of terms alone is
not very large and it grows sublinearly (according to Heaps law - [3]). Basically,
it is constant for the used language (there is a limited number of words in every
language). In contrast, lists of occurrences grow linearly (and depended on size
of collection).

At the beginning of our algorithm Index(D, M) we load to primary memory
sorted list of every known basic and derived word morphemes and known by
ispell. We are able to determine basic morpheme of the term parsed from doc-
ument with help of this list, if it contained in this list. We use basic algorithm
until primary memory is exhausted. Then we transmit term occurrences to the
database and erase it from primary memory. It is important, that list of terms
is in memory all the time. At the end we load list of terms to the database,
compute weights of terms and norms of documents. Weights can be computed
with SQL command

1 Algorithm Index(D) had in tests about 20% speed penalty comparing with algorithm
Index(D,M) especially due to writing of term occurrences to table termDoc



INSERT into TermDoc (id_term, id_doc, weight, count)
SELECT TD.id_term, TD.id_doc, TD.count*Term.idf, TD.count
from Term, Temp TD
where TD.id_term=Term.id

where table Temp consists of columns id_term, id_doc and count and it
contains data from inverted list (which was transmitted to the database with
LOAD command). Norms can be computed with similar SQL command.

We separate terms and term occurrences, so we do not merge partial inverted
lists as Index(M). We record term frequency and inverse document frequency
during the running of algorithm, so we do not compute it as Index(D). Algorithm
Index(D, M) is in fig. 2. Parts introduced in basic algorithm are leaved out.

process N documents
and write terms and its
occurrences to index;
write documents to table
Doc

load array of words from
ispell and their basic
morphemes

compute term
weights

compute norms of
documents

write terms to
table Term

write occurrences to
table TermDoc and
erase memory

[enough memory]

[low memory]
[all docs processed]

[some docs not processed]

Fig. 2. Generation of inverted list - algorithm Index(D, M)

5 Distributed Indexing

We can speed up computation of inverted list by distribution of indexing to more
computers. The main idea consists of dividing of computing to four phases. Two
of them can be distributed. We used SIMD architecture (see [12]). Most of the
time is taken by computation, sending data over network take negligible time.
We will refer our algorithm by name DIndex(D, M).



Phase A concerns with document parsing. Document collection is divided
regularly amongst q computers. Computer i (1 ≤ i ≤ q) creates table Doci,
termDoci and termi. Table termi does not contain id as key identifier. The key
is just the name of the term (id is not useful as the table term is distributed).
At the end of the phase tables termi will be sent to the central computer.

In phase B partial tables termi are joined together in central computer. It
can be done with SQL command

INSERT into Term (name, df, idf) (1)
select name, sum(df), log(n/sum(df))
from
select name, df from Term1 union all
select name, df from Term2 union all ...
group by name

where n is number of documents. Primary key of table Term will have
auto_increment type.

Phase C begins with sending of table Term to every computer. Term weights
are computed by each computer with following SQL command

INSERT into TermDoci (id_term, id_doc, weight, count)
SELECT TD.id_term, TD.id_doc, TD.count*Term.idf, TD.count
from Term, Tempi TD
where TD.name=Term.name

Norms of documents can be also computed in phase C (every computer has
necessary data).

Last phase D consists of joining tables termDoc and doc in central computer
similar to phase D. This phase is not necessary in the case of distributed querying,
which can speed up simple querying. In this case documents are distributed
amongst computers, term weights are computed consistently.

6 Test Results of Indexing

We used collection of news articles of Slovak daily SME. This collection has size
53 MB, time of indexing was about 10 minutes. Computer configuration consists
of processor 1,2 GHz and 512 MB of primary memory. We used database MySQL.

We carried out the tests also with the bigger collection LATimes [5] (English
news articles published in Los Angeles Times, 130000 documents, 390 MB). The
whole process of indexing took about 60 minutes.

6.1 Estimation of Time Complexity of Indexing

We determine relation between collection size nMB (in megabytes, for example)
and number of all (non-unique) terms in whole collection. Such terms are in



progression si
k, k ∈ [1, mDi ], we define mK as a number of these terms. Our tests

show linear relation between nMB and mK .
Relation between number of terms mK and number of unique terms mT for

specified collection can be expressed exponentially according to Heaps law [3]

mT = O((mK)β)

where 0 < β < 1 is constant depended on collection. The value of this
constant (obtained experimentally) is βSME = 0.77 for the collection SME and
βLATimes = 0.7 for the collection LATimes. Since mK linearly depended on
nMB , we can write

mT = O((mMB)β)

Algorithm Index(D, M) consists of several phases:

– A: Create/load ispell dictionary
– B: Parse documents
– C: Write terms to database
– D: Write term occurrences to database
– E: Compute term weights
– F: Compute document norms

Phase A take constant time, we will refer it as tA.
Phase B depends on number of terms mK (all must be processed). The

algorithm search in sorted array of morphemes (from ispell dictionary) insert
terms into sorted array of unique terms (progression tj , j ∈ [1, mT ]). Search-
ing/inserting in sorted array have logarithmic time complexity. Since both ar-
rays are in primary memory, speed of work with these array are much bigger the
work with documents in the secondary memory. Moreover, array of morphemes
have constant size, that means searching take constant time also. Next array of
unique terms have much lesser size than array of all terms (mT << mK). Time
complexity of this phase can be expressed

tB = O(mK · log(mT )) ≈ O(mK) = O(mMB)

That means

tB = kB · nMB

Our experiments validate this equation. Value of constant kB can be seen in
fig. 3. This linear time complexity O(nMB) is confirmed with other works too,
for example [10].

Phases A and B were fully under our control and we can exactly estimate
time complexity for bigger collections too. Phases C, D, E and F use database.
Algorithms use by database can vary and studying them is not our goal (we
used SQL commands only). Experimental results range from linear complexity
O(nMB) to complexity close to quadratic O((nMB)2). It depends on memory
available for database cache.



3,5

4,5

5,5

6,5

7,5

8,5

9,5

2 4 10 20,5 31,3 41,6 51,9 58,9 73,9 88,2 146 294 383

ve¾kos� kolekcie (MB)

k
o

n
š

ta
n

ta
k

B

SME LaTimes

Fig. 3. Values of the constant kB in dependence on collection size, for SME and LA-
Times

6.2 Estimation of Time Complexity of Distributed Indexing

Speedup of computation can be measured by effectiveness, which can be com-
puted as follows (see [12])

EK(n, q) =
SK(n)

TK(n, q) · q
where SK(n) is time to solve task K with input of size n by best known

sequential algorithm and TK(n, q) is time to solve task K with input of size n by
q computers. If EK(n, k) equals to 1 then distributed algorithm is optimal dis-
tributed. If EK(n, k) equals to some constant c < 1 for every q then distributed
algorithm is linearly speeded up.

Comparison of sequential algorithm against distributed algorithm can be
seen in fig. 4 for collection SME. We can see effectiveness of computation, which
descends with increasing number of computers. It causes non-distributed phases
B and D of algorithm DIndex(M, D).

Three main activities are executed in the phase A. First of them - parsing of
documents - take about 70% of overall time of sequential algorithm Index(D, M)
for our collection. 2 So we can find out a best acquisition of distributing in this
activity. Parsing of documents has linear time complexity, so it will be speed up
optimal, as we can see in fig. 5.

Second activity of phase A is loading term occurrences to database. This
activity has linearly effectiveness, but not optimal (see fig. 5). The reason follows:
table docT ermi contains string identifier of term (its name) instead of its numeric
identifier. A string is longer than a number and creation of database index for
2 This number will decrease with size of collection, since loading of term occurrences

and weight computation have complexity close to quadratic for bigger collection.
Parsing of collection LATimes take about 60% of overall time.



528

658

407

307
258 232

190 177 176

0

100

200

300

400

500

600

700

s 1 2 3 4 5 10 15 20

computers

s
e
c
o

n
d

s

Fig. 4. Distributing of indexing, s means sequential algorithm

string is much more difficult. Third activity is generation of local table termi.
The effectiveness is linear (see fig. 5). We cannot speak about optimality, since
this activity has no opposite in sequential algorithm. In other side, in sequential
algorithm are activities, which have no opposite in distributed algorithm (loading
unique terms to database, for example).

0,35

0,45

0,55

0,65

0,75

0,85

0,95

1,05

1 2 3 4 5 10 15 20

computers

e
ff

e
c

ti
v

it
y

parsing term occurrences loading

generation of local table of terms term weights and norms

Fig. 5. Effectiveness of several activities of distributed indexing

Phase B concerns with generation of global table term. If number of comput-
ers increases, command (1) will be more complex (one table will be added for
every computer). This command executes joining of tables while their whole size
is constant (for specified collection). The more tables we need to join (even sum
of their sizes is constant), more complicated SQL command will be. Syntactic
parsing of this command, initial works for every table and other overhead cause
linearly (and not constant) time complexity of this phase, as follows



tG(q, n) = t1G(n) + kG · q
t1G(n) is time to execute of phase B on one computer and kG · q expresses

time penalty for a lot of tables in SQL command (1). The value of the constant
kG equals to 0,5s in our configuration.

Phase C - computation of term weights and norms - has optimal linearly
effectiveness (see fig. 5). Time complexity of phase D (joining of tables termDoci

and doci) is similar to phase B and can be similar expressed

tJ (q, n) = t1J(n) + kJ · q

7 Conclusion

Both indexing and distributive indexing of document collection were successfully
implemented in Java, we choose database MySQL (in principle any database
compliance SQL99 and supported Java can be used). Time complexity of gen-
eration of inverted list is linear. Time complexity of loading of this list to the
database and computing of the term weights is between linear and quadratic
complexity, which depends on size of available memory and used database. Dis-
tributed indexing enables speed up indexing rapidly, although effectiveness is
not optimal, therefore number of useful computers is limited.

References

1. Baeza-Yates, R., Ribeiro-Neto, B. : Modern information retrieval. Addison Wesley
(1999), 197-198

2. Grossman, D. A., Frieder, O. : Information Retrieval: Algoritms and heuristics.
Kluwer Academic Publishers (2000) 169-170

3. Heaps, J. : Information Retrieval - Computational and Theoretical aspects. Aca-
demic Press, 1978

4. http://spell.linux.sk
5. http://trec.nist.gov
6. http://jakarta.apache.org/lucene
7. Lundquist, C. : Relational information retrieval: Using Relevance Feedback and

Parallelism to Improve Accuracy and Performance. PhD thesis, George Mason
University (1997)

8. Macleod, I. : A relational approach to modular information retrieval systems design.
In Proceedings of the ASIS Annual Meeting (1978) 83-85

9. http://www.ibm.com/notes
10. Ribeiro-Neto, B., Moura, E. S., Neubert, M. S., Ziviani, N. : Efficient distributed

algorithms to buildinverted files, In 22th ACM Conf. on R&D in Information Re-
trieval, 1999

11. Salton, G., Buckley, C. : Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24, 513-523 (1988)

12. Tvrdlík, P.: Parallel Systems and Algorithms, ČVUT, 1997.


